Adenosine/TGFβ axis in regulation of mammary fibroblast functions.

PLoS ONE(2021)

引用 0|浏览1
暂无评分
摘要
Cancer associated fibroblasts (CAF) play a key role in cancer progression and metastasis. Diminished TGFβ response on CAF correlates with poor outcome and recurrence in cancer patients. Mechanisms behind lost TGFβ signaling on CAF are poorly understood, but, utilizing MMTV-PyMT mouse model, we have previously demonstrated that in tumor microenvironment myeloid cells, producing adenosine, contribute to downregulated TGFβ signaling on CAFs. In the current work, we performed serial in vitro studies to investigate the role of adenosine/TGFβ axis in mouse mammary fibroblast functions, i.e., proliferation, protein expression, migration, and contractility. We found that adenosine analog NECA diminished TGFβ-induced CCL5 and MMP9 expression. Additionally, we discovered that NECA completely inhibited effect of TGFβ to upregulate αSMA, key protein of cytoskeletal rearrangements, necessary for migration and contractility of fibroblasts. Our results show that TGFβ increases contractility of mouse mammary fibroblasts and human fibroblast cell lines, and NECA attenuates theses effects. Using pharmacological approach and genetically modified animals, we determined that NECA effects on TGFβ pathway occur via A2A/A2B adenosine receptor-AC-PKA dependent manner. Using isolated CD11b+ cells from tumor tissue of CD73-KO and CD39-KO animals in co-culture experiments with ATP and AMP, we confirmed that myeloid cells can affect functions of mammary fibroblasts through adenosine signaling. Our data suggest a novel mechanism of interaction between adenosine and TGFβ signaling pathways that can impact phenotype of fibroblasts in a tumor microenvironment.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要