A Facile Synthesis of Bi2O3/CoFe2O4 Nanocomposite with Improved Synergistic Photocatalytic Potential for Dye Degradation

Catalysts(2021)

引用 0|浏览1
暂无评分
摘要
Semiconductor-based photocatalysis is a probable approach to overcoming many pollution problems and eradicating toxic organic materials from wastewater. This research endeavor aimed to explore the synergistic potential of different semiconductor nanocomposites for photocatalytic degradation of organic pollutants in contaminated water. A facile hydrothermal approach was employed to synthesize bismuth oxide and cobalt ferrite nanoparticles from their precursors—bismuth nitrate pentahydrate, ferric chloride hexahydrate and cobalt chloride hexahydrate—with various concentrations and conditions to optimize the product. Subsequently, nanocomposites of bismuth oxide and cobalt ferrite were prepared by solid-state mixing in varying concentrations followed by calcination. UV/visible diffuse reflectance spectroscopy, X-ray diffraction, scanning electron microscopy and elemental dispersive X-ray spectroscopic techniques have corroborated the successful synthesis of nanocomposites. The energy gaps of bismuth oxide and cobalt ferrite nanocomposites were computed in the range of 1.58–1.62 eV by Tauc plots. These nanocomposite materials were ascertained for photocatalytic potential to degrade methyl orange organic dye in water. A nanocomposite with equiquantic proportions has shown the best photocatalytic degradation activity, which may be attributed to the type-II band configuration and a synergistic effect, because Bi2O3 acts as an electron sink. This synergism has reduced the cogent band gap, hindered electron hole recombination and increased electron hole availabilities for photodegradation reactions, thus ensuing an efficient photodegradation co-work of Bi2O3/CoFe2O4 nanocomposites.
更多
查看译文
关键词
photocatalyst,nanocomposite,energy gap,dye degradation,hydrothermal synthesis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要