Dysregulated bile acid signaling contributes to the neurological impairment in murine models of acute and chronic liver failureResearch in context

EBioMedicine(2018)

引用 0|浏览1
暂无评分
摘要
Background: Hepatic encephalopathy (HE), a severe neuropsychiatric complication, is associated with increased blood levels of ammonia and bile acids (BAs). We sought to determine (1) whether abnormally increased blood BAs in liver cirrhotic patients with HE is caused by elevation of apical sodium-dependent BA transporter (ASBT)-mediated BA reabsorption; and (2) whether increased BA reabsorption would exacerbate ammonia-induced brain injuries. Methods: We quantitatively measured blood BA and ammonia levels in liver cirrhosis patients with or without HE and healthy controls. We characterized ASBT expression, BA profiles, and ammonia concentrations in a chronic liver disease (CLD) mouse model induced by streptozotocin-high fat diet (STZ-HFD) and an azoxymethane (AOM) - induced acute liver failure (ALF) mouse model. These two mouse models were treated with SC-435 (ASBT inhibitor) and budesonide (ASBT activator), respectively. Findings: Blood concentrations of ammonia and conjugated BAs were substantially increased in cirrhotic patients with HE (n = 75) compared to cirrhotic patients without HE (n = 126). Pharmacological inhibition of the enterohepatic BA circulation using a luminal- restricted ASBT inhibitor, SC-435, in mice with AOM-induced ALF and STZ-HFD -induced CLD effectively reduced BA and ammonia concentrations in the blood and brain, and alleviated liver and brain damages. Budesonide treatment induced liver and brain damages in normal mice, and exacerbated these damages in AOM-treated mice. Interpretation: ASBT mediated BA reabsorption increases intestinal luminal pH and facilitates conversion of intestinal ammonium to ammonia, leading to abnormally high levels of neurotoxic ammonia and cytotoxic BAs in the blood and brain. Inhibition of intestinal ASBT with SC-435 can effectively remove neurotoxic BAs and ammonia from the bloodstream and thus, mitigate liver and brain injuries resulting from liver failure. Keywords: Bile acids, Ammonia, Hepatic encephalopathy, Apical sodium-dependent bile acid transporter
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要