Facial synthesis of p-p heterojunction composites: Evaluation of their electrochemical properties with photovoltaics-electrolyzer water splitting using two-electrode system

International Journal of Hydrogen Energy(2023)

引用 10|浏览2
暂无评分
摘要
Mixed transition metal oxides have garnered widespread interest as alternative electrocatalysts for the oxygen and hydrogen generation reactions; however, they tend to require extended synthetic routes, in addition to possessing limited electrocatalytic activities and stabilities. Herein, we report the observation of a synergistic effect between the non-precious metal oxides Mn3O4 and Co3O4 with CuO and NiO, wherein the resulting composites exhibit promising properties as catalysts for the alkaline water electrolysis process. The activities of these composites in both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) were improved compared to their counterparts, and the dynamic potentials of these processes were reduced. Importantly, low overpotentials of 202 and 380 mV were found for the CuO–Mn3O4 composite catalysts for the OER and the HER at 10 mA/cm2, respectively. In addition, electrochemical impedance spectroscopy measurements showed a reduced impedance response for the composites, which was dominated by the relaxation of the intermediate frequency associated with the adsorption of the intermediate. Furthermore, the superior catalytic activities of the composites were attributed to their structural properties, high electroactive surface areas, fast electron transport kinetics, and good chemo-electrical bonding between Mn3O4 and CuO. Importantly, merging with a marketable silicon-based solar cells, the accumulated PV-EC water splitting device obtains greater hydrogen production under stimulated solar light irradiation. This work offers a typical demonstration and respected strategies for practical large-scale solar H2 production via an economical PV-EC technology.
更多
查看译文
关键词
Bifunctional catalyst, Mn3O4, Co3O4, PV-EC Water splitting, HER, OER
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要