Carbon defective g-C3N4 thin-wall tubes for drastic improvement of photocatalytic H2 production

Carbon(2023)

引用 24|浏览1
暂无评分
摘要
Both morphology and defects play a vital role for boosting photocatalytic efficiency. Herein, a vapor-assisted surface reconstruction was developed to synthesize g-C3N4 thin-wall tubes with carbon defects. The significantly reduced wall thickness delivers rich disclosed active sites, ensures efficient the mass transport as well as suppresses interior recombination of photoexcited carriers. The intentionally introduced carbon defects in the heptazine rings owing to the altered surface charge state, optimizes the band structure and suppresses exterior recombination of photoexcited carriers. The resultant g-C3N4 with vigoroso reduction potential possess a tremendous improvement (25-fold) for H2 production under visible light, which outperforms the majority of the previously reported g-C3N4 tubes. With pressing research demands, the functionality of vapor-assisted surface reconstruction was deeply revealed by theoretical and experimental evidences. This clean strategy enriches the rational design of high-performance g-C3N4 photocatalysts.
更多
查看译文
关键词
Photocatalysis,g-C3N4 tubes,Carbon defects,H2 production
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要