A Three-Stage Stochastic Framework for Smart Electric Vehicle Charging

IEEE Access(2023)

引用 1|浏览21
暂无评分
摘要
As one of the most significant part of carbon neutralisation, the rapid growth of electric vehicle (EV) market in past few years has greatly expedited the transport electrification, which, however, has brought in new challenges to power system including isolated distribution network for commercial and industrial set up. Stochastic and complex EV behaviours would violate network permissible operation region and increase costs for system operators. To address these problems, a chance-constrained smart EV charging strategy in a DC microgrid (DCMG) supporting large office complex is proposed to minimize system cost from distribution network and fleet battery degradation cost from EVs providing ancillary service to the DCMG. When dealing with uncertainties from EVs, a Markov Chain Monte Carlo (MCMC) model is built to couple different parameters in load profiles and characterize the time series of likelihood of charging and discharging. A state-of-charge (SOC) space random walk method is then proposed to solve the resultant massive recursive probabilistic charging requirements. Based on that, a three-stage optimization framework is established to illustrate the work flow in system level. Numerical results verifying the effectiveness of the proposed method are also presented.
更多
查看译文
关键词
Battery degradation,chance constraint,DC microgrid,electric vehicle (EV),EV charging,Markov Chain Monte Carlo,multi-objective optimisation,optimal power flow,power losses,vehicle-to-grid (V2G)
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要