Osteo-Immunomodulatory Role of Interleukin-4-Immobilized Plasma Immersion Ion Implantation Membranes for Bone Regeneration.

ACS applied materials & interfaces(2023)

引用 3|浏览37
暂无评分
摘要
Barrier membranes for guided tissue regeneration are essential for bone repair and regeneration. The implanted membranes may trigger early inflammatory responses as a foreign material, which can affect the recruitment and differentiation of bone cells during tissue regeneration. The purpose of this study was to determine whether immobilizing interleukin 4 (IL4) on plasma immersion ion implantation (PIII)-activated surfaces may alter the osteo-immunoregulatory characteristics of the membranes and produce pro-osteogenic effects. In order to immobilize IL4, polycaprolactone surfaces were modified using the PIII technology. No discernible alterations were found between the morphology before and after PIII treatment or IL4 immobilization. IL4-immobilized PIII surfaces polarized macrophages to an M2 phenotype and mitigated inflammatory cytokine production under lipopolysaccharide stimulation. Interestingly, the co-culture of macrophages (on IL4-immobilized PIII surfaces) and bone marrow-derived mesenchymal stromal cells enhanced the production of angiogenic and osteogenic factors and triggered autophagy activation. Exosomes produced by PIII + IL4-stimulated macrophages were also found to play a role in osteoblast differentiation. In conclusion, the osteo-immunoregulatory properties of bone materials can be modified by PIII-assisted IL4 immobilization, creating a favorable osteoimmune milieu for bone regeneration.
更多
查看译文
关键词
bone regeneration,macrophages,osteogenesis,plasma immersion ion implantation (PIII),surface modification
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要