Improving cooperativity of transcription activators by oligomerization domains in mammalian cells (vol 8, pg 114, 2023)

Synthetic and Systems Biotechnology(2023)

引用 0|浏览11
暂无评分
摘要
Cooperative activation is critical for the applications of synthetic biology in mammalian cells. In this study, we have developed cooperative transcription factor by fusing oligomerization domain in mammalian cells. Firstly, we demonstrated that two oligomerized domains (CI434 and CI) successfully improved transcription factor cooperativity in bacterial cells but failed to increase cooperativity in mammalian cells, possibly because the additional mammalian activation domain disrupted their oligomerization capability. Therefore, we chose a different type of oligomerized domain (CarHC), whose ability to oligomerize is not dependent on its C-terminal domains, to fuse with a transcription factor (RpaR) and activation domain (VTR3), forming a potential cooperative transcription activator RpaR-CarH-VTR3 for mammalian regulatory systems. Compared with RpaR-VTR3, the cooperativity of RpaR-CarH-VTR3 was significantly improved with higher Hill coefficient and a narrower input range in the inducible switch system in mammalian cells. Moreover, a mathematical model based on statistical mechanics model was developed and the simulation results supported the hypothesis that the tetramer of the CarH domain in mammalian cells was the reason for the cooperative capacity of RpaR-CarH-VTR3.
更多
查看译文
关键词
transcription activators,oligomerization domains,mammalian cells,cooperativity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要