Gut microbial considerations and feasibility of phytochemicals as anti-COVID prophylaxis: Critical role of bioavailability.

Phytotherapy research : PTR(2023)

引用 1|浏览1
暂无评分
摘要
Phytotherapy ResearchEarly View LETTER TO THE EDITOR Gut microbial considerations and feasibility of phytochemicals as anti-COVID prophylaxis: Critical role of bioavailability Priyankar Dey, Corresponding Author Priyankar Dey [email protected] [email protected] orcid.org/0000-0002-9513-425X Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India Correspondence Priyankar Dey, Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India. Email: [email protected], [email protected]Search for more papers by this author Priyankar Dey, Corresponding Author Priyankar Dey [email protected] [email protected] orcid.org/0000-0002-9513-425X Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India Correspondence Priyankar Dey, Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab, India. Email: [email protected], [email protected]Search for more papers by this author First published: 03 January 2023 https://doi.org/10.1002/ptr.7722Citations: 1Read the full textAboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat No abstract is available for this article. REFERENCES Baranwal, M., Gupta, Y., Dey, P., & Majaw, S. (2021). Antiinflammatory phytochemicals against virus-induced hyperinflammatory responses: Scope, rationale, application, and limitations. Phytotherapy Research, 35(11), 6148–6169. Cai, Z. Y., Li, X. M., Liang, J. P., Xiang, L. P., Wang, K. R., Shi, Y. L., … Liang, Y. R. (2018). Bioavailability of tea Catechins and its improvement. Molecules, 23(9), 2346. https://doi.org/10.3390/molecules23092346 Chen, F., Wen, Q., Jiang, J., Li, H.-L., Tan, Y.-F., Li, Y.-H., & Zeng, N.-K. (2016). Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs? Journal of Ethnopharmacology, 179, 253–264. Chow, H. S., Cai, Y., Hakim, I. A., Crowell, J. A., Shahi, F., Brooks, C. A., … Alberts, D. S. (2003). Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals. Clinical Cancer Research, 9(9), 3312–3319. Dey, P. (2019). Gut microbiota in phytopharmacology: A comprehensive overview of concepts, reciprocal interactions, biotransformations and mode of actions. Pharmacological Research, 147, 104367. Dey, P., Chaudhuri, S. R., Efferth, T., & Pal, S. (2021). The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist–from fundamentals to future challenges. Free Radical Biology and Medicine, 176, 265–285. Espín, J. C., González-Sarrías, A., & Tomás-Barberán, F. A. (2017). The gut microbiota: A key factor in the therapeutic effects of (poly) phenols. Biochemical Pharmacology, 139, 82–93. Fadlalla, M., Ahmed, M., Ali, M., Elshiekh, A. A., & Yousef, B. A. (2022). Molecular docking as a potential approach in repurposing drugs against COVID-19: A systematic review and novel pharmacophore models. Current Pharmacology Reports, 8, 1–15. Gao, S., & Hu, M. (2010). Bioavailability challenges associated with development of anti-cancer phenolics. Mini Reviews in Medicinal Chemistry, 10(6), 550–567. Krupkova, O., Ferguson, S. J., & Wuertz-Kozak, K. (2016). Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. The Journal of Nutritional Biochemistry, 37, 1–12. Lampe, J. W., & Chang, J. L. (2007). Interindividual differences in phytochemical metabolism and disposition. Seminars in Cancer Biology, 17(5), 347–353. https://doi.org/10.1016/j.semcancer.2007.05.003 Lee, B. Y. (2020). What is Oleandrin? Is Trump pushing FDA to approve this for Covid-19 Coronavirus? Retrieved from https://www.forbes.com/sites/brucelee/2020/08/18/what-is-oleandrin-will-trump-push-fda-to-approve-this-for-covid-19-coronavirus/?sh=1e4a373b5470 Li, J., Sasaki, G. Y., Dey, P., Chitchumroonchokchai, C., Labyk, A. N., McDonald, J. D., … Bruno, R. S. (2018). Green tea extract protects against hepatic NFκB activation along the gut-liver axis in diet-induced obese mice with nonalcoholic steatohepatitis by reducing endotoxin and TLR4/MyD88 signaling. The Journal of Nutritional Biochemistry, 53, 58–65. Li, N., Taylor, L. S., Ferruzzi, M. G., & Mauer, L. J. (2012). Kinetic study of catechin stability: Effects of pH, concentration, and temperature. Journal of Agricultural and Food Chemistry, 60(51), 12531–12539. Mhatre, S., Naik, S., & Patravale, V. (2021). A molecular docking study of EGCG and theaflavin digallate with the druggable targets of SARS-CoV-2. Computers in Biology and Medicine, 129, 104137. https://doi.org/10.1016/j.compbiomed.2020.104137 Murphy, H. (2020). Drug pitched to Trump for Covid-19 comes from a deadly plant. Retrieved from https://www.nytimes.com/2020/08/20/health/covid-oleandrin-trump-mypillow.html Ohishi, T., Hishiki, T., Baig, M. S., Rajpoot, S., Saqib, U., Takasaki, T., & Hara, Y. (2022). Epigallocatechin gallate (EGCG) attenuates severe acute respiratory coronavirus disease 2 (SARS-CoV-2) infection by blocking the interaction of SARS-CoV-2 spike protein receptor-binding domain to human angiotensin-converting enzyme 2. PLoS One, 17(7), e0271112. Ordonez, A. A., Bullen, C. K., Villabona-Rueda, A. F., Thompson, E. A., Turner, M. L., Merino, V. F., … Komm, O. (2022). Sulforaphane exhibits antiviral activity against pandemic SARS-CoV-2 and seasonal HCoV-OC43 coronaviruses in vitro and in mice. Communications Biology, 5(1), 1–11. Philip Rucker, Y. A., Dawsey, J., & Costa, R. (2020). The lost days of summer: How Trump fell short in containing the virus. Retrieved from https://www.washingtonpost.com/politics/trump-struggled-summer-coronavirus/2020/08/08/e12ceace-d80a-11ea-aff6-220dd3a14741_story.html Rathaur, P., & Johar, K. S. R. (2019). Metabolism and pharmacokinetics of phytochemicals in the human body. Current Drug Metabolism, 20(14), 1085–1102. Saha, M. R., & Dey, P. (2021). Pharmacological benefits of acacia against metabolic diseases: Intestinal-level bioactivities and favorable modulation of gut microbiota. Archives of Physiology and Biochemistry, 2021, 1–17. Shaik, F. B., Swarnalatha, K., Mohan, M. C., Thomas, A., Chikati, R., Sandeep, G., & Maddu, N. (2022). Novel antiviral effects of chloroquine, hydroxychloroquine, and green tea catechins against SARS-CoV-2 main protease and 3C-like protease for COVID-19 treatment. Clinical Nutrition Open Science, 42, 62–72. Sisakht, M., Mahmoodzadeh, A., & Darabian, M. (2021). Plant-derived chemicals as potential inhibitors of SARS-CoV-2 main protease (6LU7), a virtual screening study. Phytotherapy Research, 35(6), 3262–3274. https://doi.org/10.1002/ptr.7041 Citing Literature Early ViewOnline Version of Record before inclusion in an issue ReferencesRelatedInformation
更多
查看译文
关键词
microbial considerations,phytochemicals,prophylaxis
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要