Nonlinear conjugate gradient methods: worst-case convergence rates via computer-assisted analyses

arxiv(2023)

引用 0|浏览2
暂无评分
摘要
We propose a computer-assisted approach to the analysis of the worst-case convergence of nonlinear conjugate gradient methods (NCGMs). Those methods are known for their generally good empirical performances for large-scale optimization, while having relatively incomplete analyses. Using our computer-assisted approach, we establish novel complexity bounds for the Polak-Ribière-Polyak (PRP) and the Fletcher-Reeves (FR) NCGMs for smooth strongly convex minimization. In particular, we construct mathematical proofs that establish the first non-asymptotic convergence bound for FR (which is historically the first developed NCGM), and a much improved non-asymptotic convergence bound for PRP. Additionally, we provide simple adversarial examples on which these methods do not perform better than gradient descent with exact line search, leaving very little room for improvements on the same class of problems.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要