Bioinspired polydopamine-mediated metal-organic framework click-grafting aptamers functionalized fabric for highly-specific recognition of microcystin-leucine arginine.

Journal of chromatography. A(2022)

引用 3|浏览2
暂无评分
摘要
Fabricating functional electrospun nanofiber coating for highly selective extraction of microcystin-LR (MC-LR) was of significant importance for water-safety monitoring. Herein, a novel MOF@aptamer functionalized nanofabric was presented via a facile and reliable strategy integrating polydopamine (PDA) mediation and thiol-ene chemistry and applied for specific recognition of the MC-LR model analyte. Using polydopamine (PDA) as the mediating layer, vinyl-UiO-66 MOF was grown in situ, followed by post-synthetic modification (PSM) of Zr4+ with vinyl phosphate and rapid UV-initiated click reaction of aptamers. Uniform deposition of Zr-based MOF (vinyl-UiO-66) on the nanofibers was directly produced, and the tedious co-electrospinning process was abandoned to prevent the aggregation and encapsulation of MOF. Via an efficient "thiol-ene" chemistry, massive thiol-terminated aptamers were grafted on MOF within one step under friendly conditions, rather than the time-consuming nanoparticle adsorption or unfriendly covalent chemical reactions. As a result, the robust MOF@aptamer-coated nano-fabrics were obtained, and a highly selective performance towards MC-LR was illustrated with a limit of detection (LOD) at 0.002 ng/mL, good precision (CV<8.3%), good repeatability (2.2∼6.0%) when coupled with LC-MS. Almost 1∼2 orders of magnitude higher detection sensitivity was exhibited than that of the common non-specific SPE/SPME fiber reported so far. Applied to water samples, the good matrix-resistance ability, and acceptable recovery yields were achieved with high specificity. This strategy might provide a rapid and friendly protocol to efficiently fabricate MOF@aptamer functionalized nano-fabrics through electrospinning and interfacial "thiol-ene" chemistry for highly-selective microextraction.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要