FastKLEE: faster symbolic execution via reducing redundant bound checking of type-safe pointers.

ACM SIGSOFT Conference on the Foundations of Software Engineering (FSE)(2022)

引用 1|浏览14
暂无评分
摘要
Symbolic execution (SE) has been widely adopted for automatic program analysis and software testing. Many SE engines (e.g., KLEE or Angr) need to interpret certain Intermediate Representations (IR) of code during execution, which may be slow and costly. Although a plurality of studies proposed to accelerate SE, few of them consider optimizing the internal interpretation operations. In this paper, we propose FastKLEE, a faster SE engine that aims to speed up execution via reducing redundant bound checking of type-safe pointers during IR code interpretation. Specifically, in FastKLEE, a type inference system is first leveraged to classify pointer types (i.e., safe or unsafe) for the most frequently interpreted read/write instructions. Then, a customized memory operation is designed to perform bound checking for only the unsafe pointers and omit redundant checking on safe pointers. We implement FastKLEE on top of the well-known SE engine KLEE and combined it with the notable type inference system CCured. Evaluation results demonstrate that FastKLEE is able to reduce by up to 9.1% (5.6% on average) as the state-of-the-art approach KLEE in terms of the time to explore the same number (i.e., 10k) of execution paths. FastKLEE is opensourced at https://github.com/haoxintu/FastKLEE. A video demo of FastKLEE is available at https://youtu.be/fjV_a3kt-mo.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要