Learning Gait Emotions Using Affective and Deep Features

Motion in Games(2022)

引用 1|浏览14
暂无评分
摘要
ABSTRACT We present a novel data-driven algorithm to learn the perceived emotions of individuals based on their walking motion or gaits. Given an RGB video of an individual walking, we extract their walking gait as a sequence of 3D poses. Our goal is to exploit the gait features to learn and model the emotional state of the individual into one of four categorical emotions: happy, sad, angry, or neutral. Our perceived emotion identification approach uses deep features learned using long short-term memory networks (LSTMs) on datasets with labeled emotive gaits. We combine these features with gait-based affective features consisting of posture and movement measures. Our algorithm identifies both the categorical emotions from the gaits and the corresponding values for the dimensional emotion components - valence and arousal. We also introduce and benchmark a dataset called Emotion Walk (EWalk), consisting of videos of gaits of individuals annotated with emotions. We show that our algorithm mapping the combined feature space to the perceived emotional state provides an accuracy of 80.07% on the EWalk dataset, outperforming the current baselines by an absolute 13–24%.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要