Use of NanoBiT and NanoBRET to characterise interleukin-23 receptor dimer formation in living cells.

British journal of pharmacology(2023)

引用 2|浏览4
暂无评分
摘要
BACKGROUND AND PURPOSE:Interleukin-23 (IL-23) and its receptor are important drug targets for the treatment of auto-inflammatory diseases. IL-23 binds to a receptor complex composed of two single transmembrane spanning proteins IL23R and IL12Rβ1. In this study, we aimed to gain further understanding of how ligand binding induces signalling of IL-23 receptor complexes using the proximity-based techniques of NanoLuc Binary Technology (NanoBiT) and Bioluminescence Resonance Energy Transfer (BRET). EXPERIMENTAL APPROACH:To monitor the formation of IL-23 receptor complexes, we developed a split luciferase (NanoBiT) assay whereby heteromerisation of receptor subunits can be measured through luminescence. The affinity of NanoBiT complemented complexes for IL-23 was measured using NanoBRET, and cytokine-induced signal transduction was measured using a phospho-STAT3 AlphaLISA assay. KEY RESULTS:NanoBiT measurements demonstrated that IL-23 receptor complexes formed to an equal degree in the presence and absence of ligand. NanoBRET measurements confirmed that these complexes bound IL-23 with a picomolar binding affinity. Measurement of STAT3 phosphorylation demonstrated that pre-formed IL-23 receptor complexes induced signalling following ligand binding. It was also demonstrated that synthetic ligand-independent signalling could be induced by high affinity (HiBit) but not low affinity (SmBit) NanoBiT crosslinking of the receptor N-terminal domains. CONCLUSIONS AND IMPLICATIONS:These results indicate that receptor complexes form prior to ligand binding and are not sufficient to induce signalling alone. Our findings indicate that IL-23 induces a conformational change in heteromeric receptor complexes, to enable signal transduction. These observations have direct implications for drug discovery efforts to target the IL-23 receptor.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要