High Estradiol reduces adult neurogenesis but strengthens functional connectivity within the hippocampus during spatial pattern separation in adult female rats

bioRxiv (Cold Spring Harbor Laboratory)(2022)

引用 1|浏览3
暂无评分
摘要
Adult neurogenesis in the dentate gyrus plays an important role for pattern separation, the process of separating similar inputs and forming distinct neural representations. Estradiol modulates neurogenesis and hippocampus function, but to date no examination of the effect of estradiol on pattern separation have been conducted. Here, we examined estrogenic regulation of adult neurogenesis and functional connectivity in the hippocampus after the spatial pattern separation task in female rats. Ovariectomized Sprague-Dawley rats received daily injections of vehicle, 0.32 μg (Low) or 5 μg (High) of estradiol benzoate until the end of experiment. A single bromodeoxyuridine (BrdU) was injected one day after initiation of hormone or vehicle treatment and rats were tested in the delayed nonmatching to position spatial pattern separation task in the 8-arm radial maze for 14 days beginning two weeks after BrdU injection. Rats were perfused 90 minutes after the final trial and brain sections were immunohistochemically stained for BrdU/neuronal nuclei (NeuN) (new neurons), Ki67 (cell proliferation), and the immediate early gene, zif268 (activation). Results showed that only high estradiol reduced the density of BrdU/NeuN-ir cells and had significant inter-regional correlations of zif268-ir cell density in the hippocampus following pattern separation. Estradiol treatment did not influence pattern separation performance or strategy use. These results show that higher doses of estradiol can reduce neurogenesis but at the same time increases correlations of activity of neurons within the hippocampus during spatial pattern separation. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要