VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely?

NeurIPS 2022(2022)

引用 9|浏览52
暂无评分
摘要
Vertical Federated Learning (VFL), that trains federated models over vertically partitioned data, has emerged as an important learning paradigm. However, existing VFL methods are facing two challenges: (1) scalability when # participants grows to even modest scale and (2) diminishing return w.r.t. # participants: not all participants are equally important and many will not introduce quality improvement in a large consortium. Inspired by these two challenges, in this paper, we ask: How can we select l out of m participants, where l ≪ m, that are most important? We call this problem Vertically Federated Participant Selection, and model it with a principled mutual information-based view. Our first technical contribution is VF-MINE—a Vertically Federated Mutual INformation Estimator—that uses one of the most celebrated algorithms in database theory—Fagin’s algorithm as a building block. Our second contribution is to further optimize VF-MINE to enable VF-PS, a group testing-based participant selection framework. We empirically show that vertically federated participation selection can be orders of magnitude faster than training a full-fledged VFL model, while being able to identify the most important subset of participants that often lead to a VFL model of similar quality.
更多
查看译文
关键词
Vertical federated learning,participant valuation,participant selection,mutual information
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要