The Dynamic Mortise-and-Tenon Interlock Assists Hydrated Soft Robots Toward Off-Road Locomotion

Research(2022)

引用 10|浏览19
暂无评分
摘要
Natural locomotion such as walking, crawling, and swimming relies on spatially controlled deformation of soft tissues, which could allow efficient interaction with the external environment. As one of the ideal candidates for biomimetic materials, hydrogels can exhibit versatile bionic morphings. However, it remains an enormous challenge to transfer these in situ deformations to locomotion, particularly above complex terrains. Herein, inspired by the crawling mode of inchworms, an isotropic hydrogel with thermoresponsiveness could evolve to an anisotropic hydrogel actuator via interfacial diffusion polymerization, further evolving to multisection structure and exhibiting adaptive deformation with diverse degrees of freedom. Therefore, a dynamic mortise-and-tenon interlock could be generated through the interaction between the self-deformation of the hydrogel actuator and rough terrains, inducing continual multidimensional locomotion on various artificial rough substrates and natural sandy terrain. Interestingly, benefiting from the powerful mechanical energy transfer capability, the crawlable hydrogel actuators could also be utilized as hydrogel motors to activate static cargos to overstep complex terrains, which exhibit the potential application of a biomimetic mechanical discoloration device. Therefore, we believe that this design principle and control strategy may be of potential interest to the field of deformable materials, soft robots, and biomimetic devices.
更多
查看译文
关键词
mortise-and-tenon,off-road
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要