Tight relationship between two photosystems is robust in rice leaves under various nitrogen conditions

Journal of Plant Research(2022)

引用 1|浏览8
暂无评分
摘要
Leaf nitrogen (N) level affects not only photosynthetic CO 2 assimilation, but also two photosystems of the photosynthetic electron transport. The quantum yield of photosystem II [Y(II)] and the non-photochemical yield due to the donor side limitation of photosystem I [Y(ND)], which denotes the fraction of oxidized P700 (P700 + ) to total P700, oppositely change depending on leaf N level, and the negative correlation between these two parameters has been reported in leaves of plants cultivated at various N levels in growth chambers. Here, we aimed to clarify whether this correlation is maintained after short-term changes in leaf N level, and what parameters are the most responsive to the changes in leaf N level under field conditions. We cultivated rice varieties at two N fertilization levels in paddy fields, treated additional N fertilization to plants grown at low N, and measured parameters of two photosystems of mature leaves. In rice leaves under low N condition, the Y(ND) increased and the photosynthetic linear electron flow was suppressed. In this situation, the accumulation of P700 + can function as excess energy dissipation. After the N addition, both Y(ND) and Y(II) changed, and the negative correlation between them was maintained. We used a newly-developed device to assess the photosystems. This device detected the similar changes in Y(ND) after the N addition, and the negative correlation between Y(ND) and photosynthetic O 2 evolution rates was observed in plants under various N conditions. This study has provided strong field evidence that the Y(ND) largely changes depending on leaf N level, and that the Y(II) and Y(ND) are negatively correlated with each other irrespective of leaf N level, varieties and annual variation. The Y(ND) can stably monitor the leaf N status and the linear electron flow under field conditions.
更多
查看译文
关键词
Low nitrogen stress, Photosynthetic control, Photosynthetic electron transport, Photosystem I, Rice
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要