Nobiletin, a NF-κB signaling antagonist, promotes BMP-induced bone formation.

FASEB bioAdvances(2023)

引用 1|浏览3
暂无评分
摘要
The NF-κB family of transcription factors plays an important role in skeletal development and bone homeostasis. In osteoblast cells, NF-κB signaling has been shown to suppress survival, proliferation, and differentiation. Furthermore, pharmacological suppression of NF-κB enhances osteoblast differentiation and bone formation. Thus, NF-κB antagonists are promising candidates as anabolic agents for enhancing bone mass. In this study, we describe the mechanism by which nobiletin, an inhibitor of NF-κB activity, regulates osteoblast differentiation and mineralization. We found that in MC3T3-E1 osteoblast cells, nobiletin inhibited a TNF-α responsive NF-κB luciferase reporter and also decreased the induction of classical NF-κB target genes by TNF-α. Consistent with this, nobiletin prevented TNF-α -mediated suppression of osteogenesis and potently enhanced the differentiation and mineralization of MC3T3-E1 cells. Likewise, in an in vivo BMP2-induced ectopic bone formation assay, nobiletin markedly enhanced ossicle bone volume. Western blotting and SMAD-responsive luciferase assays also demonstrated that NF-κB suppression of BMP signaling could be inhibited by nobiletin. Thus, our data suggest that mechanistically, nobiletin prevents the endogenous repression of BMP signaling by TNF-α, thereby enhancing osteoblast activity. In conclusion, nobiletin is a novel NF-κB antagonist that may be a useful anabolic agent for bone formation.
更多
查看译文
关键词
BMPs,NF‐κB signaling,Nobiletin,TNF‐α,bone formation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要