Thermal conductivity of AlxGa1-xN (0 <= x <= 1) epitaxial layers

PHYSICAL REVIEW MATERIALS(2022)

引用 1|浏览9
暂无评分
摘要
AlxGa1-xN ternary alloys are emerging ultrawide band gap semiconductor materials for high-power electronics applications. The heat dissipation, which mainly depends on the thermal conductivity of the constituent material in the device structures, is the key for device performance and reliability. However, the reports on the thermal conductivity of AlxGa1-xN alloys are very limited. Here, we present a comprehensive study of the thermal conductivity of AlxGa1-xN in the entire Al composition range. Thick AlxGa1-xN layers grown by metal-organic chemical vapor deposition on GaN/sapphire and GaN/SiC templates are examined. The thermal conductivity measurements are done by the transient thermoreflectance method at room temperature. The effects of the Al composition, dislocation density, Si doping, and layer thickness on the thermal conductivity of AlxGa1-xN layers are thoroughly investigated. All experimental data are fitted by the modified Callaway model within the virtual crystal approximation, and the interplay between the different phonon scattering mechanisms is analyzed and discussed.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要