On the Development of a Novel Acoustic Flowmeter for High-Temperature Gas-Cooled Reactors

NUCLEAR TECHNOLOGY(2022)

引用 1|浏览1
暂无评分
摘要
Measuring the flow rate in High-Temperature Gas-cooled Reactors is a challenge for traditional flowmeters due to the high flow rate (10 to 15 m/s at nominal operating conditions), high operating temperatures (>700 degrees C), and high neutron flux and gamma fields in the reactor core. This paper discusses developing a novel flowmeter that can work under these extreme conditions. Oak Ridge National Laboratory first proposed using acoustics to measure the flow in the reactor, more specifically, using a Kelvin-Helmholtz resonator to correlate the gas flow rate with vibration frequency. With the primary goal of developing an acoustic measurement technique, we propose an acoustic corrugated pipe as a candidate for the development of a novel gas flowmeter. Experimental investigations on corrugated pipes have confirmed the dependence of the whistling frequency on the gas flow rate. Also, a tube-in-tube configuration is proposed for the flowmeter prototype, which can help mitigate resonance between the system and the flowmeter. Experimental investigation using the prototype has shown good independence from the piping system. Furthermore, Unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations have been performed and validated with a satisfactory agreement, providing confidence that URANS models can adequately predict the characteristic curve (flow rate versus frequency) of the corrugated pipe and can therefore be used to optimize the flowmeter designs cost-effectively.
更多
查看译文
关键词
HTGRs, acoustics, flowmeter, URANS
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要