An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing

NATURE ELECTRONICS(2022)

引用 13|浏览9
暂无评分
摘要
The effective mimicry of neurons is key to the development of neuromorphic electronics. However, artificial neurons are not typically capable of operating in biological environments, which limits their ability to interface with biological components and to offer realistic neuronal emulation. Organic artificial neurons based on conventional circuit oscillators have been created, but they require many elements for their implementation. Here we report an organic artificial neuron that is based on a compact nonlinear electrochemical element. The artificial neuron can operate in a liquid and is sensitive to the concentration of biological species (such as dopamine or ions) in its surroundings. The system offers in situ operation and spiking behaviour in biologically relevant environments—including typical physiological and pathological concentration ranges (5–150 mM)—and with ion specificity. Small-amplitude (1–150 mV) electrochemical oscillations and noise in the electrolytic medium shape the neuronal dynamics, whereas changes in ionic (≥2% over the physiological baseline) and biomolecular (≥ 0.1 mM dopamine) concentrations modulate the neuronal excitability. We also create biohybrid interfaces in which an artificial neuron functions synergistically and in real time with epithelial cell biological membranes.
更多
查看译文
关键词
Biophysics,Electrical and electronic engineering,Materials for devices,Neuroscience,Electrical Engineering
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要