Blue photoluminescence enhancement achieved by zero-dimensional organic indium halides via a metal ion doping strategy

MATERIALS CHEMISTRY FRONTIERS(2023)

引用 1|浏览3
暂无评分
摘要
Low-dimensional organic-inorganic metal halide hybrids exhibit promising optical properties for light emitting applications. However, developing lead-free blue-light emitters with high photoluminescence quantum efficiency (PLQE) remains an ongoing challenge. In our work, a novel zero-dimensional (0D) indium hybrid compound (MA)(4)InCl7 (MA = CH3NH3+) was developed which exhibited broadband blue emission with a PLQE of 11.2% when excited by ultraviolet (UV) light. More interestingly, upon Cs+ or Mn2+ doping, the emission of the 0D compound further blue-shifted and became narrower, while the PLQE was significantly enhanced to 18.8% (Cs+) or 20.7% (Mn2+). More prominent PLQE enhancement to 74.7% was observed after Sb3+ doping, which also altered the emission spectrum to the orange region. According to experimental characterization and theoretical calculations, we attribute the PLQE enhancement upon Cs+ and Mn2+ doping to defect passivation and the orange emission upon Sb3+ doping to altered emission centers. We have demonstrated that multiple metal ions possess the ability to improve the light emitting properties of 0D organic-inorganic metal halides, and (MA)(4)InCl7 could be utilized as a Sb3+ heavy metal ion sensor with high selectivity and sensitivity.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要