Microbial infection risk predicts antimicrobial potential of avian symbionts.

Frontiers in microbiology(2022)

引用 0|浏览9
暂无评分
摘要
Symbiotic bacteria on animal hosts can prevent pathogenic bacterial infections by several mechanisms. Among them, symbiotic bacteria can indirectly enhance host's immune responses or, directly, produce antimicrobial substances against pathogens. Due to differences in life-style, different host species are under different risks of microbial infections. Consequently, if symbiotic bacteria are somewhat selected by genetically determined host characteristics, we would expect the antimicrobial properties of bacterial symbionts to vary among host species and to be distributed according to risk of infection. Here we have tested this hypothesis by measuring the antimicrobial ability of the bacterial strains isolated from the uropygial-gland skin of 19 bird species differing in nesting habits, and, therefore, in risk of microbial infection. In accordance with our predictions, intensity and range of antimicrobial effects against the indicator strains assayed varied among bird species, with hole-and open-nesters showing the highest and the lowest values, respectively. Since it is broadly accepted that hole-nesters have higher risks of microbial infection than open nesters, our results suggest that the risk of infection is a strong driver of natural selection to enhance immunocompetence of animals through selecting for antibiotic-producing symbionts. Future research should focus on characterizing symbiotic bacterial communities and detecting coevolutionary processes with particular antibiotic-producing bacteria within-host species.
更多
查看译文
关键词
antibiotic-producing bacteria,antimicrobial activity,birds,natural selection,symbiotic bacteria,uropygial gland,uropygial secretion
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要