An embedded interfacial network stabilizes inorganic CsPbI 3 perovskite thin films

Nature communications(2022)

引用 7|浏览37
暂无评分
摘要
The black perovskite phase of CsPbI 3 is promising for optoelectronic applications; however, it is unstable under ambient conditions, transforming within minutes into an optically inactive yellow phase, a fact that has so far prevented its widespread adoption. Here we use coarse photolithography to embed a PbI 2 -based interfacial microstructure into otherwise-unstable CsPbI 3 perovskite thin films and devices. Films fitted with a tessellating microgrid are rendered resistant to moisture-triggered decay and exhibit enhanced long-term stability of the black phase (beyond 2.5 years in a dry environment), due to increasing the phase transition energy barrier and limiting the spread of potential yellow phase formation to structurally isolated domains of the grid. This stabilizing effect is readily achieved at the device level, where unencapsulated CsPbI 3 perovskite photodetectors display ambient-stable operation. These findings provide insights into the nature of phase destabilization in emerging CsPbI 3 perovskite devices and demonstrate an effective stabilization procedure which is entirely orthogonal to existing approaches.
更多
查看译文
关键词
Chemical engineering,Phase transitions and critical phenomena,Solar cells,Science,Humanities and Social Sciences,multidisciplinary
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要