Contrasting effects of nitrogen and phosphorus additions on nitrogen competition between coniferous and broadleaf seedlings.

The Science of the total environment(2023)

引用 3|浏览19
暂无评分
摘要
Nitrogen (N) is a major element limiting plant growth and metabolism. Nitrogen addition can influence plant growth, N uptake, and species interactions, while phosphorus (P) addition may affect N acquisition. However, knowledge of how nutrient availability influences N uptake and species interactions remains limited and controversial. Here, pot experiments were conducted for 14 months, in which conifers (Pinus massoniana and Pinus elliottii) and broadleaved trees (Michelia maudiae and Schima superba) were planted in monoculture or mixture, and provided additional N and P in a full-factorial design. Nitrogen addition increased the biomass, but P addition did not significantly affect the biomass of the four subtropical species. Combined N and P (NP) addition had no additive effect on plant biomass over N addition. Total plant biomass was significantly positively correlated to root traits (branching intensity and root tissue density) and leaf traits (net photosynthetic rate, stomatal conductance, and transpiration rate), but negatively correlated to root diameter in response to nutrient addition. Plant uptake rates of NH or NO were not altered by N addition, but P or NP additions decreased NH uptake rates and increased NO uptake rates. Neighboring conifers significantly inhibited NH and NO uptake rates of the two broadleaf species, but neighboring broadleaves had no effects on the N uptake rates of pine species. The effects of nutrient additions on interspecific interactions differed among species. Nitrogen addition altered the interaction of P. elliottii and M. maudiae from neutral to competition, while P addition altered the interaction of P. massoniana and M. maudiae from neutral to favorable effects. Increasing nutrient availability switched the direction of interspecific interaction in favor of pines. This study provides insights into forest management for productivity improvement and optimizing the selection of broadleaf species regarding differences in soil fertility of subtropical plantations.
更多
查看译文
关键词
Competitive response,N uptake,Nutrient addition,Species interaction
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要