log*-Round Game-Theoretically-Fair Leader Election.

IACR Cryptology ePrint Archive(2022)

引用 0|浏览22
暂无评分
摘要
It is well-known that in the presence of majority coalitions, strongly fair coin toss is impossible. A line of recent works have shown that by relaxing the fairness notion to game theoretic, we can overcome this classical lower bound. In particular, Chung et al. (CRYPTO'21) showed how to achieve approximately (game-theoretically) fair leader election in the presence of majority coalitions, with round complexity as small as O(log log n) rounds. In this paper, we revisit the round complexity of game-theoretically fair leader election. We construct O(log * n) rounds leader election protocols that achieve (1 - o(1))-approximate fairness in the presence of (1 - o(1))n-sized coalitions. Our protocols achieve the same round-fairness trade-offs as Chung et al.'s and have the advantage of being conceptually simpler. Finally, we also obtain game-theoretically fair protocols for committee election which might be of independent interest.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要