Structural Model for Self-Limiting β-strand Arrangement Within an Alzheimer's Amyloid-β Oligomer

biorxiv(2022)

引用 1|浏览12
暂无评分
摘要
Previous reports revealed that sodium dodecyl sulfate near its critical micelle concentration can drive the assembly of Aβ42 along an oligomeric pathway. This pathway produces a 150 kDa peptide oligomer (approximately 32 peptide molecules or protomers) that does not aggregate further into amyloid fibrils. Solid-state nuclear magnetic resonance (NMR) spectroscopy revealed structural features distinguishing the 150 kDa oligomer from fibrils. A puzzling feature was the coexistence of parallel and antiparallel β-sheets within the oligomer structure. Here we present new atomic-level structural constraints obtained via solid-state NMR spectroscopy, benefitting from improved resolution via sample concentration by ultracentrifugation. In addition, two-dimensional cryo-electron microscopy (cryo-EM) reconstruction revealed a 4-fold symmetric shape. We propose a structural model to rationalize the solid-sate NMR- and cryo-EM-derived structural constraints. This model has a hollow square cylinder shape, with antiparallel β-sheets formed by residues 33-39 lining the inner walls and parallel β-sheets formed by residues 11-22 lining the outer walls. Within successive layers, the outer β-strands on each side of the square cylinder alternate between two forms: one within a U-shaped protomer and another within L-shaped protomer. Molecular dynamics simulations show that, when the oligomer model is embedded in a lipid membrane, ions permeate through the central pore, with cation selectivity. The model further motivates an assembly pathway-based interpretation that may explain why the 150 kDa oligomer does not undergo further aggregation into amyloid fibrils. ### Competing Interest Statement The authors have declared no competing interest.
更多
查看译文
关键词
alzheimers,self-limiting
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要