Polarity of the CRISPR roadblock to transcription

Nature Structural & Molecular Biology(2022)

引用 2|浏览2
暂无评分
摘要
CRISPR (clustered regularly interspaced short palindromic repeats) utility relies on a stable Cas effector complex binding to its target site. However, a Cas complex bound to DNA may be removed by motor proteins carrying out host processes and the mechanism governing this removal remains unclear. Intriguingly, during CRISPR interference, RNA polymerase (RNAP) progression is only fully blocked by a bound endonuclease-deficient Cas (dCas) from the protospacer adjacent motif (PAM)-proximal side. By mapping dCas-DNA interactions at high resolution, we discovered that the collapse of the dCas R-loop allows Escherichia coli RNAP read-through from the PAM-distal side for both Sp–dCas9 and As–dCas12a. This finding is not unique to RNAP and holds for the Mfd translocase. This mechanistic understanding allowed us to modulate the dCas R-loop stability by modifying the guide RNAs. This work highlights the importance of the R-loop in dCas-binding stability and provides valuable mechanistic insights for broad applications of CRISPR technology.
更多
查看译文
关键词
DNA,Single-molecule biophysics,Transcription,Life Sciences,general,Biochemistry,Protein Structure,Membrane Biology,Biological Microscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要