The ChaC1 active site: Defining the residues and determining the role of ChaC1-exclusive residues in the structural and functional stability.

Proteins(2022)

引用 0|浏览3
暂无评分
摘要
The glutathione degrading enzyme ChaC1 is highly upregulated in several cancers and viral infections making it a potential pharmacological target for cancer therapy. As an enzyme, however, ChaC1 has a relatively high Km (~2 mM) towards its natural substrate, and therefore finding its inhibitors becomes very difficult. Given this limitation, a careful mapping of the active site has become necessary. In the current study, the enzyme-substrate complex was generated by docking glutathione with the modeled hChaC1 structure. Using a combination of in silico and wet lab approaches, the active site residues forming direct interactions with the substrate glutathione were identified and validated. Furthermore, the role of residues exclusively conserved in the ChaC family and forming the surface of the active site were also explored for their putative role in active site stabilization. Mutants of these residues have been analysed for their structural stability and interaction with the substrate through MD simulations and MMGBSA binding energy calculations. These findings were experimentally validated by assessment of their function through in vivo assays in yeast. The experimental evidences along with the molecular modeling suggest that residues 38'YGSL'41, D68, R72, E115, and Y143 are responsible for high affinity binding of hChaC1 with the substrate/inhibitor, whereas the residues exclusive to the ChaC family are required for the structural stability of the enzyme and its active site. Such a characterization of essential active site and conserved residues is significant as a key step toward rational design of novel inhibitors of the ChaC1 enzyme.
更多
查看译文
关键词
ChaC1,MD simulations,active site mapping,glutathione,homology modeling,pharmacological target
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要