Seed Myco-priming improves crop yield and herbivory induced defenses in maize by coordinating antioxidants and Jasmonic acid pathway

BMC plant biology(2022)

引用 2|浏览4
暂无评分
摘要
Background Seed Myco-priming based on consortium of entomopathogenic fungi is very effective seed treatment against Ostrinia furnacalis herbivory. Maize regulates defense responses against herbivory by the production of defense-related enzymatic and non-enzymatic antioxidants, phytohormones, and their corresponding genes. Jasmonic acid (JA) plays a key role in plant-entomopathogenic fungi-herbivore interaction. Results To understand how a consortium of the entomopathogenic fungi Beauveria bassiana and Trichoderma asperellum induce changes in the response of maize to herbivory and increase the crop yield, 2-year field experiment, antioxidant enzymes, leaf transcriptome, and phytohormone were performed. Fungal inoculation enhanced the production of antioxidant enzymes and JA signaling pathway more than the normal herbivory. The comparison between single inoculated, consortium inoculated, and non-inoculated plants resulted in distinct transcriptome profiles representing a considerable difference in expression of antioxidant- and JA- responsive genes identified through Weighted gene co-expression network analysis (WGCNA) and expression analysis, respectively. Seed priming with a consortium of B. bassiana and T. asperellum significantly enhanced the expression of genes involved in antioxidants production and JA biosynthesis cascade, with the highest expression recorded at 24-h post O. furnacalis larval infestation. They reduced the larval nutritional indices and survival up to 87% and enhancing crop yield and gross return up to 82-96% over the year 2018 and 2019. Conclusion From our results we suggest that a consortium of B. bassiana and T. asperellum can be used synergistically against O. furnacalis in maize under field condition and can mediate antioxidants- and JA- associated maize defense response by boosting up the expression of their responsive genes, thereby enhancing crop yield.
更多
查看译文
关键词
Antioxidant,Entomopathogenic fungi,Jasmonic acid,Ostrinia furnacalis,Seed Myco-priming
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要