Adaptive Dynamic Surface Control of Strict-Feedback Fractional-Order Nonlinear Systems with Input Quantization and External Disturbances

FRACTAL AND FRACTIONAL(2022)

引用 1|浏览3
暂无评分
摘要
In this work, an adaptive dynamic surface control law for a type of strict-feedback fractional-order nonlinear system is proposed. The considered system contained input quantization and unknown external disturbances. The virtual control law is presented by utilizing a dynamic surface control approach at each step, where the nonlinear compensating term with the estimation of unknown bounded parameters is introduced to overcome the influence of unknown external disturbances and surface errors. Meanwhile, the adaptive laws of relevant parameters are also designed. In addition, an improved fractional-order nonlinear filter is developed to deal with the explosion of complexity raised by the recursive process. In the last step, an adaptive dynamic surface control law is proposed to ensure the convergence of tracking error, in which the Nussbaum gain function is applied to solve the problem of the unknown control gain generated by input quantization. Then, the fractional Lyapunov stability theory is applied to verify the stability of the proposed control law. Finally, simulation examples are given to illustrate the effectiveness of the proposed control law.
更多
查看译文
关键词
strict-feedback fractional-order systems,fuzzy logic system,dynamic surface control,input quantization
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要