A mathematical theory of resolution limits for super-resolution of positive sources

arxiv(2022)

引用 0|浏览0
暂无评分
摘要
The superresolving capacity for number and location recoveries in the super-resolution of positive sources is analyzed in this work. Specifically, we introduce the computational resolution limit for respectively the number detection and location recovery in the one-dimensional super-resolution problem and quantitatively characterize their dependency on the cutoff frequency, signal-to-noise ratio, and the sparsity of the sources. As a direct consequence, we show that targeting at the sparest positive solution in the super-resolution already provides the optimal resolution order. These results are generalized to multi-dimensional spaces. Our estimates indicate that there exist phase transitions in the corresponding reconstructions, which are confirmed by numerical experiments. Our theory fills in an important puzzle towards fully understanding the super-resolution of positive sources.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要