Soil carbon pools are affected by species identity and productivity in a tree common garden experiment

FRONTIERS IN FORESTS AND GLOBAL CHANGE(2022)

引用 0|浏览16
暂无评分
摘要
The formation and turnover of soil organic carbon (C), the largest terrestrial C pool, is strongly impacted by the ultimate source of that C: leaves, wood, roots, and root exudates. The quantity and quality of these inputs is determined by the identity of the plants involved. Yet substantial uncertainty surrounds the complex relationships among plant traits and soil C, precluding efforts to maximize whole-ecosystem C uptake in nature-based climate mitigation scenarios. In this study, we leveraged a biodiversity-ecosystem function experiment with trees (IDENT) to explore the effects of interspecific variation in plant traits on soil C dynamics in the very early stages of stand development (9 years since planting). Mineral soil C stocks to 5 cm depth were quantified in monospecific plots of 19 tree species planted on a former agricultural field, and analyzed in relation to tree growth and functional traits. We found that tree species identity affected soil bulk density and, to a lesser extent, the carbon content of the topsoil, and thereby total C pools. Among species and across plots, mineral soil C stocks were positively correlated with rates of tree growth and were significantly larger beneath broadleaf trees with "fast" functional traits vs. conifers with more conservative leaf traits, when comparisons were made over equivalent soil depth increments. Thus, plant functional traits mediate interspecific differences in productivity, which in turn influence the magnitude of belowground C stocks. These results highlight important linkages between above- and belowground carbon cycles in the earliest stages of afforestation.
更多
查看译文
关键词
biodiversity-ecosystem function experiments,functional traits,IDENT,soil carbon,tree plantation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要