Semantic Communications for Wireless Sensing: RIS-aided Encoding and Self-supervised Decoding

arxiv(2023)

引用 27|浏览15
暂无评分
摘要
Semantic communications can reduce the resource consumption by transmitting task-related semantic information extracted from source messages. However, when the source messages are utilized for various tasks, e.g., wireless sensing data for localization and activities detection, semantic communication technique is difficult to be implemented because of the increased processing complexity. In this paper, we propose the inverse semantic communications as a new paradigm. Instead of extracting semantic information from messages, we aim to encode the task-related source messages into a hyper-source message for data transmission or storage. Following this paradigm, we design an inverse semantic-aware wireless sensing framework with three algorithms for data sampling, reconfigurable intelligent surface (RIS)-aided encoding, and self-supervised decoding, respectively. Specifically, on the one hand, we propose a novel RIS hardware design for encoding several signal spectrums into one MetaSpectrum. To select the task-related signal spectrums for achieving efficient encoding, a semantic hash sampling method is introduced. On the other hand, we propose a self-supervised learning method for decoding the MetaSpectrums to obtain the original signal spectrums. Using the sensing data collected from real-world, we show that our framework can reduce the data volume by 95% compared to that before encoding, without affecting the accomplishment of sensing tasks. Moreover, compared with the typically used uniform sampling scheme, the proposed semantic hash sampling scheme can achieve 67% lower mean squared error in recovering the sensing parameters. In addition, experiment results demonstrate that the amplitude response matrix of the RIS enables the encryption of the sensing data.
更多
查看译文
关键词
Semantic communications, reconfigurable intelligent surface, wireless sensing, self-supervised learning
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要