Highly Stable Hierarchically Structured All-Polymeric Lubricant-Infused Films Prevent Thrombosis and Repel Multidrug-Resistant Pathogens

ACS APPLIED MATERIALS & INTERFACES(2022)

引用 3|浏览4
暂无评分
摘要
Thrombus formation and infections caused by bacterial adhesion are the most common causes of failure in blood-contacting medical devices. Reducing the interaction of pathogens using repellent surfaces has proven to be a successful strategy in preventing device failure. However, designing scale-up methodologies to create large-scale repellent surfaces remains challenging. To address this need, we have created an all-polymeric lubricant-infused system using an industrially viable swelling-coagulation solvent (S-C) method. This induces hierarchically structured micro/nano features onto the surface, enabling improved lubricant infusion. Poly(3,3,3-trifluoropropylmethylsiloxane) (PTFS) was used as the lubricant of choice, a previously unexplored omniphobic nonvolatile silicone oil. This resulted in all-polymeric liquid-infused surfaces that are transparent and flexible with long-term stability. Repellent properties have been demonstrated using human whole blood and methicillin-resistant Staphylococcus aureus (MRSA) bacteria matrices, with lubricated surfaces showing 93% reduction in blood stains and 96.7% reduction in bacterial adherence. The developed material has the potential to prevent blood and pathogenic contamination for a range biomedical devices within healthcare settings.
更多
查看译文
关键词
liquid-infused surfaces,omniphobic lubricant,hierarchically structured surfaces,antibacterial,antithrombogenic
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要