Insights into the degradation process of phenol during in-situ thermal desorption: The overlooked oxidation of hydroxyl radicals from oxygenation of reduced Fe-bearing clay minerals.

Journal of hazardous materials(2022)

引用 2|浏览9
暂无评分
摘要
In-situ thermal desorption (ISTD) has attracted increasing attention owing to the efficient removal of organic contaminants from contaminated sites. However, it is poorly understood that whether and to what extent contamination degradation occurs upon oxygenation of reduced Fe-bearing clay minerals (RFC) in the subsurface during ISTD. In this study, we evaluated the mechanism of contaminant degradation upon oxygenation of reduced clay minerals during the ISTD. Reduced nontronite (rNAu-2) and montmorillonite (rSWy-3) were selected as RFC models. Results showed that thermal treatment during ISTD could significantly enhance phenol degradation, which increased from 25.8 % at 10 °C to 74.4 % at 70 °C in rNAu-2 and from 17.7 % at 10 °C to 49.8 % at 70 °C in rSWy-3. Correspondingly, the cumulative •OH at steady-state ([•OH]ss) increased by 3.7 and 1.5 times, respectively. The acceleration of Fe(II) oxidation with increasing temperature could be mainly responsible for [•OH]ss generation, which degrades phenol. Moreover, thermal treatment improved the fast oxidation of trioctahedral entities Fe(II)Fe(II)Fe(II) (TOF) and the slow oxidation of dioctahedral entities Fe(II)Fe(II) (DTF1), AlFe(II) (DAF1), and Fe(II)Fe(III) (DTF2). Our study suggests that the overlooked degradation progress of phenol by oxygenation of RFC during ISTD, and it could be favorable for contaminant degradation during remediation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要