Results of the Interlaboratory Computational Fluid Dynamics Study of the FDA Benchmark Blood Pump

Annals of biomedical engineering(2022)

引用 1|浏览5
暂无评分
摘要
Computational fluid dynamics (CFD) is widely used to simulate blood-contacting medical devices. To be relied upon to inform high-risk decision making, however, model credibility should be demonstrated through validation. To provide robust data sets for validation, researchers at the FDA and collaborators developed two benchmark medical device flow models: a nozzle and a centrifugal blood pump. Experimental measurements of the flow fields and hemolysis were acquired using each model. Concurrently, separate open interlaboratory CFD studies were performed in which participants from around the world, who were blinded to the measurements, submitted CFD predictions of each benchmark model. In this study, we report the results of the interlaboratory CFD study of the FDA benchmark blood pump. We analyze the results of 24 CFD submissions using a wide range of different flow solvers, methods, and modeling parameters. To assess the accuracy of the CFD predictions, we compare the results with experimental measurements of three quantities of interest (pressure head, velocity field, and hemolysis) at different pump operating conditions. We also investigate the influence of different CFD methods and modeling choices used by the participants. Our analyses reveal that, while a number of CFD submissions accurately predicted the pump performance for individual cases, no single participant was able to accurately predict all quantities of interest across all conditions. Several participants accurately predicted the pressure head at all conditions and the velocity field in all but one or two cases. Only one of the eight participants who submitted hemolysis results accurately predicted absolute plasma free hemoglobin levels at a majority of the conditions, though most participants were successful at predicting relative hemolysis levels between conditions. Overall, this study highlights the need to validate CFD modeling of rotary blood pumps across the entire range of operating conditions and for all quantities of interest, as some operating conditions and regions (e.g., the pump diffuser) are more challenging to accurately predict than others. All quantities of interest should be validated because, as shown here, it is possible to accurately predict hemolysis despite having relatively inaccurate predictions of the flow field.
更多
查看译文
关键词
Blood pump,CFD,Particle image velocimetry,Validation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要