The Advancement and Challenges of Seismic Techniques for Ultra-Deep Carbonate Reservoir Exploitation in the Tarim Basin of Northwestern China

ENERGIES(2022)

引用 11|浏览4
暂无评分
摘要
The largest ultra-deep (>6000 m) strike-slip fault-controlled oilfield in the world is found in the Tarim Basin of Northwestern China. The localized fractured reservoirs are the major production targets along the strike-slip fault zones. Different from its use in the primary porous-type reservoirs, however, the conventional technology is not favorable for use in oil/gas development in Ordovician carbonate reservoirs. For this reason, high-density seismic acquisition and high-resolution seismic processing were carried out to provide high-precision data for fault and fractured reservoir identification. In addition, the multi-filtering process and the maximum likelihood method are typically used to identify small faults and fault segments along a strike-slip fault zone. Further, seismic facies-constrained inversion and amplitude attributes are favorable for large fracture-cave reservoir description. With the advancements in seismic technology, the high and stable production well ratio has been doubled in the "sweet spots" of fractured reservoir optimization, and the first ultra-deep strike-slip fault-controlled oilfield with an annual oil production of over 1 million tons has been realized, achieving economic development in the ultra-deep fractured reservoirs. However, unstable production and high rates of production decline are still significant challenges in the economic exploitation of the ultra-deep fractured reservoirs. Seismic technology requires further improvement for the description of small fractured reservoirs and matrix reservoirs, as well as reservoir connectivity prediction and hydrocarbon detection in the deep subsurface.
更多
查看译文
关键词
fractured reservoir, strike-slip fault zone, ultra-deep exploitation, seismic technology, Tarim Basin
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要