Photo-stimulated hydrogen desorption from magnesium nanoparticles

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY(2022)

引用 0|浏览2
暂无评分
摘要
Hydrogen remains an attractive energy carrier because it is abundant, environmentally friendly and has the highest gravimetric energy density of any known substance. Despite this high gravimetric energy density, hydrogen suffers from a low volumetric energy density as a room-temperature gas. To maximize volumetric energy density, storing hydrogen as a magnesium hydride is an efficient and economically viable route, owing to the low weight and high earth abundance of magnesium. A long-lasting obstacle for using magnesium is the high temperature required to release hydrogen once absorbed by mag-nesium. Although nanoscale magnesium is known to have a favorable effect on the hydrogen desorption temperature, it is not sufficient. In this work, hydrogen absorption and release was investigated by measuring optical changes, which correspond to certain hydrogen concentrations in magnesium nanoparticles. Remarkably, hydrogen desorption from the magnesium nanoparticle assembled thin films at room temperature could be achieved by illumination. This photo-stimulated hydrogen desorption introduces an effective and simple method to enable reversible hydrogen storage in magnesium. The sensitivity of the optical method here used is demonstrated by the fact that even hydrogen absorption from ambient air at 1 ppm has been measured. This work demonstrates that hydrogen can be efficiently stored and released from magnesium nanoparticles using only photons.(c) 2022 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
更多
查看译文
关键词
Magnesium nanoparticles,Hydrogen,Optical transmission,Light,Hydrogen desorption
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要