A Universal Compact Model for Spin-Transfer Torque-Driven Magnetization Switching in Magnetic Tunnel Junction

IEEE Transactions on Electron Devices(2022)

引用 2|浏览2
暂无评分
摘要
Current-induced magnetization switching through spin-transfer torque (STT) has shown great potential for low-power information storage. However, predicting its mesoscopic behavior induced by both electrical current and thermal fluctuation is a fundamental challenge in spintronics. Moreover, the physical models in different switching regimes have not been properly unified. Here, we propose a novel analytical model to describe the mean magnetization switching time in general terms. By incorporating a nondimensional parameter ${k}$ in (0,1) to elucidate the relative impact of thermal activation and current, the unified model shows good agreement with the experimental data in all the regimes, including high current regime, thermal activation regime, and the intermediate regime between them. Finally, we develop an electrical model of magnetic tunnel junction (MTJ) device with Verilog-A language and perform transient simulation to demonstrate its functionality with Spectre. The Monte Carlo simulations have also been implemented to confirm their stochastic switching behavior. This model will be greatly beneficial for accurate and efficient designs for spintronic-based integrated circuits.
更多
查看译文
关键词
Compact model,magnetic tunnel junction (MTJ),spin-transfer torque (STT),stochastic switching
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要