Square-Root Extended Information Filter for Visual-Inertial Odometry for Planetary Landing

JOURNAL OF GUIDANCE CONTROL AND DYNAMICS(2023)

引用 0|浏览4
暂无评分
摘要
A novel sequential information filter formulation for computationally efficient visual-inertial odometry and mapping is developed in this work and applied to a realistic moon landing scenario. Careful construction of the square-root information matrix, in contrast to the full information or covariance matrix, provides easy and exact mean and covariance recovery throughout operation. Compared to an equivalent extended Kalman filter implementation, which provides identical results, the proposed filter does not require explicit marginalization of past landmark states to maintain constant-time complexity. Whereas measurements to opportunistic visual features only provide relative state information, resulting in drift over time unless a priori mapped landmarks are identified and tracked, the tight coupling of the inertial measurement unit provides some inertial state information. The results are presented in a terrain-relative navigation simulation for both a purely orbital case (with no active propulsion) and a landing case with a constant thrust.
更多
查看译文
关键词
square-root,visual-inertial
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要