Loss of transcription factor EB dysregulates the G1/S transition and DNA replication in mammary epithelial cells

The Journal of biological chemistry(2022)

引用 0|浏览0
暂无评分
摘要
Triple-negative breast cancer (TNBC) poses significant challenges for treatment given the lack of targeted therapies and increased probability of relapse. It is pertinent to identify vulnerabilities in TNBC and develop newer treatments. Our prior research demonstrated that transcription factor EB (TFEB) is necessary for TNBC survival by regulating DNA repair, apoptosis signaling, and the cell cycle. However, specific mechanisms by which TFEB targets DNA repair and cell cycle pathways are unclear, and whether these effects dictate TNBC survival is yet to be determined. Here, we show that TFEB knockdown decreased the expression of genes and proteins involved in DNA replication and cell cycle progression in MDA-MB-231 TNBC cells. DNA replication was decreased in cells lacking TFEB, as measured by EdU incorporation. TFEB silencing in MDA-MB-231 and noncancerous MCF10A cells impaired progression through the S-phase following G1/S synchronization; however, this proliferation defect could not be rescued by co-knockdown of suppressor RB1. Instead, TFEB knockdown reduced origin licensing in G1 and early S-phase MDA-MB-231 cells. TFEB silencing was associated with replication stress in MCF10A but not in TNBC cells. Lastly, we identified that TFEB knockdown renders TNBC cells more sensitive to inhibitors of Aurora Kinase A, a protein facilitating mitosis. Thus, inhibition of TFEB impairs cell cycle progress by decreasing origin licensing, leading to delayed entry into the S-phase, while rendering TNBC cells sensitive to Aurora kinase A inhibitors and decreasing cell viability. In contrast, TFEB silencing in noncancerous cells is associated with replication stress and leads to G1/S arrest.
更多
查看译文
关键词
cell cycle,transcription factor,TFEB,DNA replication,origin licensing,triple negative breast cancer,DNA damage,genome stability,RNA-Seq,Aurora kinase A,Stathmin 1,RB1,MDA-MB-231,MCF-10A
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要