Waste toner-derived porous iron oxide pigments with enhanced catalytic degradation property.

Environmental research(2022)

引用 3|浏览13
暂无评分
摘要
'Wealth from Waste' is an emerging concept, since it leads an effective waste treatment and waste recyclability. On the other hand, cost effective production iron oxide (IO) nanomaterials is still needed to develop, owing to their wide applications. Herein, we proposed a simple direct calcination method to prepare porous IO (Fe3O4 and Fe2O3) nanomaterials from waste toner powder. Characterization techniques reveal that a structural change happened from Fe3O4 to γ-Fe2O3 and γ-Fe2O3 to α-Fe2O3 at the calcination temperature of 500 °C and 700 °C respectively. Consequently, optical (band gap) and magnetic parameters of IO samples were significantly varied. The pigment characteristics of the IO samples were evaluated using Commission Internationale de l'Eclairage (CIE) analysis. IO900 sample has shown good brown-red coloration (L* = 43.11, a* = 13.26 and b* = 5.69) and it also exhibited good stability in acidic and basic conditions. Practical applicability of IO pigments were also tested by mixing with plaster of paris (PP) powder. Further, porous IO samples were also used as catalysts in the reductive degradation of methyl orange (MO) dye in presence of excess sodium borohydride (NaBH4). IO, prepared at 900 °C exhibited ∼99.9% reduction efficiency within 40 min. Recycling experiments indicated that IO900 possess good stability up to seven cycles. The present porous IO samples will become potential in pigment and environmental remediation.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要