PPM1G promotes the progression of lung adenocarcinoma by inhibiting p38 activation via dephosphorylation of MEK6.

Jingying Chen, Jizhuo Li, Hong Sun, Tianyi Hu, Yameng Wang, Guoqi Kang,Mingya Cao,Xia Li

Carcinogenesis(2023)

引用 2|浏览4
暂无评分
摘要
The p38 MAP kinase (MAPK) signaling pathway is a key signal transduction cascade that cancer cells employ to sense and adapt to a plethora of environmental stimuli and has attracted much attention as a promising target for cancer therapy. Although the kinases that phosphorylate p38 have been extensively studied, the negative regulation of p38 phosphorylation remains to be elucidated. Here, we found that PPM1G was highly expressed in lung adenocarcinoma (LUAD) compared to normal tissues, and higher levels of PPM1G were observed in adverse staged LUAD. Furthermore, the higher levels of PPM1G were highly correlated with poor prognosis, according to the Cancer Genome Atlas cohort. Most importantly, we identified phospho-MEK6 as a direct substrate of PPM1G. PPM1G, a metal-dependent protein phosphatase family phosphatase, could reduce p38 phosphorylation via MEK6 dephosphorylation and contribute to the proliferation, invasion and metastasis of LUAD. Our study highlighted the essential role of PPM1G in LUAD and shed new light on unveiling the regulation of p38 activity via direct dephosphorylation of MEK6 in malignant transformation. Together, this study provides new insight into the complexity of regulating the versatile p38 signaling and suggests new directions in intervening in p38 MAPK signaling.
更多
查看译文
关键词
MEK6,PPM1G,lung adenocarcinoma,p38,phosphorylation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要