Molecular identification of bulbospinal ON neurons by GPER, which drives pain and morphine tolerance.

The Journal of clinical investigation(2023)

引用 7|浏览50
暂无评分
摘要
The rostral ventromedial medulla (RVM) exerts bidirectional descending modulation of pain attributable to the activity of electrophysiologically identified pronociceptive ON and antinociceptive OFF neurons. Here, we report that GABAergic ON neurons specifically express G protein-coupled estrogen receptor (GPER). GPER+ neurons exhibited characteristic ON-like responses upon peripheral nociceptive stimulation. Optogenetic activation of GPER+ neurons facilitated, but their ablation abrogated, pain. Furthermore, activation of GPER caused depolarization of ON cells, potentiated pain, and ameliorated morphine analgesia through desensitizing μ-type opioid receptor-mediated (MOR-mediated) activation of potassium currents. In contrast, genetic ablation or pharmacological blockade of GPER attenuated pain, enhanced morphine analgesia, and delayed the development of morphine tolerance in diverse preclinical pain models. Our data strongly indicate that GPER is a marker for GABAergic ON cells and illuminate the mechanisms underlying hormonal regulation of pain and analgesia, thus highlighting GPER as a promising target for the treatment of pain and opioid tolerance.
更多
查看译文
关键词
Neuroscience,Pain
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要