Energy-scaling of the product state distribution for three-body recombination of ultracold atoms

Physical review research(2022)

引用 2|浏览12
暂无评分
摘要
Three-body recombination is a chemical reaction where the collision of three atoms leads to the formation of a diatomic molecule. In the ultracold regime it is expected that the production rate of a molecule generally decreases with its binding energy $E_b$, however, its precise dependence and the physics governing it have been left unclear so far. Here, we present a comprehensive experimental and theoretical study of the energy dependency for three-body recombination of ultracold Rb. For this, we determine production rates for molecules in a state-to-state resolved manner, with the binding energies $E_b$ ranging from 0.02 to 77 GHz$\times h$. We find that the formation rate approximately scales as $E_b^{-\alpha}$, where $\alpha$ is in the vicinity of 1. The formation rate typically varies only within a factor of two for different rotational angular momenta of the molecular product, apart from a possible centrifugal barrier suppression for low binding energies. In addition to numerical three-body calculations we present a perturbative model which reveals the physical origin of the energy scaling of the formation rate. Furthermore, we show that the scaling law potentially holds universally for a broad range of interaction potentials.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要