ENT1 blockade by CNX-774 overcomes resistance to DHODH inhibition in pancreatic cancer

Cancer Letters(2023)

引用 2|浏览21
暂无评分
摘要
Inhibitors of dihydroorotate dehydrogenase (DHODH), a key enzyme for de novo synthesis of pyrimidine nucleotides, have failed in clinical trials for various cancers despite robust efficacy in preclinical animal models. To probe for druggable mediators of DHODH inhibitor resistance, we performed a combination screen with a small molecule library against pancreatic cancer cell lines that are highly resistant to the DHODH inhibitor brequinar (BQ). The screen revealed that CNX-774, a preclinical Bruton tyrosine kinase (BTK) inhibitor, sensitizes resistant cell lines to BQ. Mechanistic studies showed that this effect is independent of BTK and instead results from inhibition of equilibrative nucleoside transporter 1 (ENT1) by CNX-774. We show that ENT1 mediates BQ resistance by taking up extracellular uridine, which is salvaged to generate pyrimidine nucleotides in a DHODH-independent manner. In BQ-resistant cell lines, BQ monotherapy slowed proliferation and caused modest pyrimidine nucleotide depletion, whereas combination treatment with BQ and CNX-774 led to profound cell viability loss and pyrimidine starvation. We also identify N-acetylneuraminic acid accumulation as a potential marker of the therapeutic efficacy of DHODH inhibitors. In an aggressive, immunocompetent pancreatic cancer mouse model, combined targeting of DHODH and ENT1 dramatically suppressed tumor growth and prolonged mouse survival. Overall, our study defines CNX-774 as a previously uncharacterized ENT1 inhibitor and provides strong proof of concept support for dual targeting of DHODH and ENT1 in pancreatic cancer.
更多
查看译文
关键词
Pancreatic cancer,Nucleotide metabolism,DHODH inhibitor,Therapy resistance,Nucleoside transporter,CNX-774,Cancer metabolism
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要