Characteristics, sources of volatile organic compounds, and their contributions to secondary air pollution during different periods in Beijing, China

Science of The Total Environment(2023)

引用 8|浏览17
暂无评分
摘要
Continuous measurements of volatile organic compounds (VOCs), ozone (O3), fine particulate matter (PM2.5), and related parameters were conducted between April 2020 and March 2021 in Beijing, China, to characterize potential sources of VOCs and their impacts on secondary organic aerosols (SOAs) and O3 levels. The annual average mixing ratio of VOCs was 17.4 ± 10.1 ppbv, with monthly averages ranging from 11.6 to 25.2 ppbv. According to the empirical kinetic modeling approach (EKMA), O3 formation during O3 season was “VOCs-limited”, while it was in a “transition” regime during O3 pollution episodes. In the O3 season, higher ozone formation potential (OFP) of m/p-xylene, o-xylene, toluene, isopentane, and n-butane were evident during O3 pollution episodes, in line with the increasing contributions of solvent usage and coating, as well as gasoline evaporation to OFP obtained through a matrix factorization model (PMF). Aromatics contributed the most to the secondary organic aerosol formation potential (SOAFP). In the non-O3 season, the contribution of vehicle exhaust to SOAFP elevated on hazy days, thereby revealing the importance of traffic-derived VOCs for PM2.5 pollution. Our results indicate that the prior control of different VOC sources should vary by season, thereby facilitating the synergistic control of O3 and PM2.5 in Beijing.
更多
查看译文
关键词
VOCs,Source apportionment,Ozone sensitivity,Ozone formation potential,Secondary organic aerosol formation potential
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要