Dynamics of Spatiotemporal Variation of Groundwater Arsenic Due to Salt-Leaching Irrigation and Saline-Alkali Land

REMOTE SENSING(2022)

引用 0|浏览3
暂无评分
摘要
Determining the link between the evolution of salt-leaching irrigation, saline-alkali land, and groundwater arsenic (As) is essential to prevent groundwater arsenic pollution and implement appropriate soil salinization control projects. The objectives of our study were to explore the spatiotemporal correlation of saline-alkali land and salt-leaching irrigation with groundwater As in the Hetao Plain. Therefore, groundwater As concentrations during Period I (2006-2010) and Period II (2016-2020) were collected by historical data and chemical measurements. Salt-leaching irrigation area and saline-alkali land area in Period I and Period II were extracted through remote sensing data. With the increase of the salt-leaching irrigation area level (SLIAL) and saline-alkali land area level (SALAL), the variation trend in groundwater As concentration slightly fluctuated, with an increase in the SLIAL at the low SALAL, which may be because short-term flooding may not considerably enhance As mobilization. Lower groundwater As concentrations appeared in regions with higher SLIAL and lower SALAL. A larger saline-alkali land area (higher SALAL) increased the groundwater As concentration. The path analysis model confirmed that salt-leaching irrigation may increase groundwater salinity to affect groundwater As levels and to decrease the saline-alkali land area. From Periods I to II, the difference in path analysis results may imply that the decrease in the saline-alkali land area may have influenced As mobilization due to competitive adsorption caused by the increase in total dissolved solids (TDS) in groundwater. Our results provide new insights for the impacts of saline-alkali land and salt-leaching irrigation both on groundwater As concentration and the geochemical processes of As enrichment in arid and semi-arid areas with more serious salinization.
更多
查看译文
关键词
saline-alkali land,salt-leaching irrigation,groundwater,arsenic,spatiotemporal variation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要